Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity.

نویسندگان

  • Avelino Corma
  • Patricia Concepción
  • Mercedes Boronat
  • Maria J Sabater
  • Javier Navas
  • Miguel José Yacaman
  • Eduardo Larios
  • Alvaro Posadas
  • M Arturo López-Quintela
  • David Buceta
  • Ernest Mendoza
  • Gemma Guilera
  • Alvaro Mayoral
چکیده

The catalytic activity of gold depends on particle size, with the reactivity increasing as the particle diameter decreases. However, investigations into behaviour in the subnanometre regime (where gold exists as small clusters of a few atoms) began only recently with advances in synthesis and characterization techniques. Here we report an easy method to prepare isolated gold atoms supported on functionalized carbon nanotubes and their performance in the oxidation of thiophenol with O2. We show that single gold atoms are not active, but they aggregate under reaction conditions into gold clusters of low atomicity that exhibit a catalytic activity comparable to that of sulfhydryl oxidase enzymes. When clusters grow into larger nanoparticles, catalyst activity drops to zero. Theoretical calculations show that gold clusters are able to activate thiophenol and O2 simultaneously, and larger nanoparticles are passivated by strongly adsorbed thiolates. The combination of both reactants activation and facile product desorption makes gold clusters excellent catalysts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties

Gold clusters ranging in diameter from 1 to 6 nanometers have been prepared on single crystalline surfaces of titania in ultrahigh vacuum to investigate the unusual size dependence of the low-temperature catalytic oxidation of carbon monoxide. Scanning tunneling microscopy/spectroscopy (STM/STS) and elevated pressure reaction kinetics measurements show that the structure sensitivity of this rea...

متن کامل

First Principles Calculations of Supported Catalysts: CO Oxidation on MgO Supported Gold Nanoparticles

Introduction Bulk gold is a chemically inert metal, and had previously been disregarded as a candidate for catalytic applications [1]. Haruta’s pioneering work [2] showed exceptional reactivity on gold nanoparticles of 2-5 nm in diameter. Among reactions, the low temperature CO oxidation [3] on Au has created a strong interest. Model catalyst samples, which consist of planar metal oxide surface...

متن کامل

Activation Strategies for Enhancement the Catalytic Activity of Gold Nanocatalysts

Recent advances in nanoscience have led to the development of numerous methodologiesfor controlled synthesis of mono dispersed nanoparticles and/or nanoclusters via surface stabilization by organic capping ligands. The application of these nanoparticles in catalysis and other fields often requires the removal of organic ligands. It is known that the removal of organic capping agents or or...

متن کامل

Parametric Studies of Titania-Supported Gold-Catalyzed Oxidation of Carbon Monoxide

This paper remarks the general correlations of the shape and crystallinity of titanium dioxide (TiO₂) support on gold deposition and carbon monoxide (CO) oxidation. It was found that due to the larger rutile TiO₂ particles and thus the pore volume, the deposited gold particles tended to agglomerate, resulting in smaller catalyst surface area and limited gold loading, whilst anatase TiO₂ enabled...

متن کامل

Chemisorption and reactions of small molecules on small gold particles.

The activity of supported gold particles for a number of oxidations and hydrogenations starts to increase dramatically as the size falls below ~3 nm. This is accompanied by an increased propensity to chemisorption, especially of oxygen and hydrogen. The explanation for these phenomena has to be sought in kinetic analysis that connects catalytic activity with the strength and extent of chemisorp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature chemistry

دوره 5 9  شماره 

صفحات  -

تاریخ انتشار 2013